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@ (p is the space of sequences x = (xp)nee converging to 0.

@ /. is the space of bounded sequences, L. = C(fw).

Complemented subspaces

A closed subspace Y of a Banach space X is complemented if

X =Y @& Z for some closed subspace Z C X.

Equivalently, there is a bounded linear operator P : X — X, which
is a projection i.e. Po P = P, and such that P(X) =Y.

Classical results

(a) Sobczyk: If X is separable then every isomorphic copy of ¢ in
X is complemented.

(b) Phillips: ¢y is not compemented in /.
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2 ={X C C(K): X is isomorphic to ¢p};
Ze={X e 2 : X is complemented in C(K)}.
Various positions (of ¢p)
o Z.=0; C(K) is Grothendieck; examples: C(K) with K
extremely disconnected; indecomposable C(K) spaces of
Koszmider.

o Z.#0; example: K containing a converging sequence.

o 2 coinitial in Z"; example: K Rosenthal compact, K
admitting only small measures (Drygier & GP).

o Z.=2Z"; examples: compact lines (Correa & Tausk).
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Let Yo be a compactification of @ so yY® is compact and contains
® as a dense subset of isolated points
Then C(y®) contains (a natural copy of) ¢, namely

co={g€ C(yw): glyw\ ® =0},

o 3 en = Xin) € C(Y0).

Jesus Castillo, Piotr Koszmider, Wiestaw Kubi§, Omar Selim
Problem Characterize Yo such that cy is complemented in C(yw).

Recall that

co is complemented in C(y®w) whenever yo is metrizable.
cp is not complemented in C(Bw).
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Every zerodimensional Y@ may be seen as the Stone space ult(2()
of some algebra 2 C P(®) containing fin.

We shall write Ky = ult(21) for such a compactification and

Ky = Ka \ @ for its remainder.

Finitely additive measures

Let bai (2A) denote the space of all bounded finitely additive
measures on 2l.

ba(A) = {1 — to : 1, o € ba (A)}

is the space of all signed measures. Essentially, ba(2() is the dual
Banach space of all functionals on C(Ky).
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Basic lemma

The following are equivalent for fin C2A C P(®)

(i) co is complemented in C(Ky);

(ii) there is a uniformly bounded sequence (V). in ba(2l) such
that every v, vanishes on fin and v, — 6, — 0.

@ V,— 0, — 0 means that for every A€ 2

lim vy(A) =1 and lim v,(®\ A) = 0.
neA neA

o If ¢p is complemented in C(Ky) then Ky must carry a strictly
positive measure.
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Application

Proposition

Suppose that fin C A C P(®) and the quotient map
A — 2A/fin,A— A®, admits a lifting. Then ¢y is complemented in
C(Ky).

By our assumption there is a homomorphism 6 : 2(/fin — 2, such
that 6(a)* = a for a € 2/fin.

Define v, € ba; () saying that v,(A) =1 if n€ 6(A®) and
Vn(A) = 0 otherwise.

Then v,— 6, — 0.

There is a lifting for 2 — 2(/fin iff 2 is generated by fin and an
algebra 2Ag such that every nonempty A € 2y is infinite.
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@ Let B = Bor[0,1]/(A =0); S = ult(*B) is nonseparable and
carries a strictly positive measure.

o Frankiewicz & Gutek: Under CH, there is an embedding
¢ B — P(w)/fin such that A(b) = d(¢(a)) where d(-) is the
usual asymptotic density.

@ Dow & Hart: Under OCA, B does not embed into P(w)/fin.

Example using ¢ : B — P(w)/fin
Let A={AC w;A* € ¢(*B)}. Then K; =S
Q@ C(Ky) = C(S)(= L-[0,1]) contains no complemented copy of
¢o (is a Grothendieck space).
@ Drygier & GP: ¢ is not complemented in C(Ky) though the
remainder Ky supports a measure.

© C(Ky) contains a complemented copy of ¢p, spanned by Xi(n)»
for some sequence of pairwise disjoint intervals /(n) C @.
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Our main results

Assume p = ¢. There is a compactification y® such that yo \ o is
separable and ¢y is not complemented in C(yw).
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Theorem 2

Assume CH. There is a compactification y® such that yo\ o is
nonseparable and ¢y is complemented in C(y®) (so, in
particular, Yo\ @ carries a strictly postitive measure).

Does there always exist Yo such that Yo\ ® is nonseparable and
carries a strictly positive measure?

There is such yo if b= ¢ or cov(&) = m;.




