
Compactifications of ω and the Banach space c0

Grzegorz Plebanek

Instytut Matematyczny, Universytet Wroc lawski

joint work with Piotr Drygier

Winter School in Abstract Analysis

Hejnice, February 2015



Banach spaces

Notation

C (K ) is the space of continuous functions K → R.

c0 is the space of sequences x = (xn)n∈ω converging to 0.

l∞ is the space of bounded sequences, l∞ = C (βω).

Complemented subspaces

A closed subspace Y of a Banach space X is complemented if
X = Y ⊕Z for some closed subspace Z ⊆ X .
Equivalently, there is a bounded linear operator P : X → X , which
is a projection i.e. P ◦P = P, and such that P(X ) = Y .

Classical results

(a) Sobczyk: If X is separable then every isomorphic copy of c0 in
X is complemented.

(b) Phillips: c0 is not compemented in l∞.
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c0 in C (K ), K infinite compact

X = {X ⊆ C (K ) : X is isomorphic to c0};
Xc = {X ∈X : X is complemented in C (K )}.

Various positions (of c0)

Xc = /0; C (K ) is Grothendieck; examples: C (K ) with K
extremely disconnected; indecomposable C (K ) spaces of
Koszmider.

Xc 6= /0; example: K containing a converging sequence.

Xc coinitial in X ; example: K Rosenthal compact, K
admitting only small measures (Drygier & GP).

Xc = X ; examples: compact lines (Correa & Tausk).
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c0 and compactifications of ω

Let γω be a compactification of ω so γω is compact and contains
ω as a dense subset of isolated points
Then C (γω) contains (a natural copy of) c0, namely

c0 = {g ∈ C (γω) : g |γω \ω ≡ 0},

c0 3 en→ χ{n} ∈ C (γω).

Jesus Castillo, Piotr Koszmider, Wies law Kubís, Omar Selim

Problem Characterize γω such that c0 is complemented in C (γω).

Recall that

c0 is complemented in C (γω) whenever γω is metrizable.
c0 is not complemented in C (βω).
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Compactifications of ω and subalgebras of P(ω)

Every zerodimensional γω may be seen as the Stone space ult(A)
of some algebra A⊆ P(ω) containing fin.
We shall write KA = ult(A) for such a compactification and
K ∗A = KA \ω for its remainder.

Finitely additive measures

Let ba+(A) denote the space of all bounded finitely additive
measures on A.

ba(A) = {µ1−µ2 : µ1,µ2 ∈ ba+(A)}

is the space of all signed measures. Essentially, ba(A) is the dual
Banach space of all functionals on C (KA).
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Basic lemma

Lemma

The following are equivalent for fin⊆ A⊆ P(ω)

(i) c0 is complemented in C (KA);

(ii) there is a uniformly bounded sequence (νn)n in ba(A) such
that every νn vanishes on fin and νn−δn→ 0.

Remarks

νn−δn→ 0 means that for every A ∈ A

lim
n∈A

νn(A) = 1 and lim
n∈A

νn(ω \A) = 0.

If c0 is complemented in C (KA) then K ∗A must carry a strictly
positive measure.
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Application

Proposition

Suppose that fin⊆ A⊆ P(ω) and the quotient map
A→ A/fin,A→ A•, admits a lifting. Then c0 is complemented in
C (KA).

Proof.

By our assumption there is a homomorphism θ : A/fin→ A, such
that θ(a)• = a for a ∈ A/fin.
Define νn ∈ ba+(A) saying that νn(A) = 1 if n ∈ θ(A•) and
νn(A) = 0 otherwise.
Then νn−δn→ 0.

Remark

There is a lifting for A→ A/fin iff A is generated by fin and an
algebra A0 such that every nonempty A ∈ A0 is infinite.



Application

Proposition

Suppose that fin⊆ A⊆ P(ω) and the quotient map
A→ A/fin,A→ A•, admits a lifting. Then c0 is complemented in
C (KA).

Proof.

By our assumption there is a homomorphism θ : A/fin→ A, such
that θ(a)• = a for a ∈ A/fin.
Define νn ∈ ba+(A) saying that νn(A) = 1 if n ∈ θ(A•) and
νn(A) = 0 otherwise.
Then νn−δn→ 0.

Remark

There is a lifting for A→ A/fin iff A is generated by fin and an
algebra A0 such that every nonempty A ∈ A0 is infinite.



Application

Proposition

Suppose that fin⊆ A⊆ P(ω) and the quotient map
A→ A/fin,A→ A•, admits a lifting. Then c0 is complemented in
C (KA).

Proof.

By our assumption there is a homomorphism θ : A/fin→ A, such
that θ(a)• = a for a ∈ A/fin.

Define νn ∈ ba+(A) saying that νn(A) = 1 if n ∈ θ(A•) and
νn(A) = 0 otherwise.
Then νn−δn→ 0.

Remark

There is a lifting for A→ A/fin iff A is generated by fin and an
algebra A0 such that every nonempty A ∈ A0 is infinite.



Application

Proposition

Suppose that fin⊆ A⊆ P(ω) and the quotient map
A→ A/fin,A→ A•, admits a lifting. Then c0 is complemented in
C (KA).

Proof.

By our assumption there is a homomorphism θ : A/fin→ A, such
that θ(a)• = a for a ∈ A/fin.
Define νn ∈ ba+(A) saying that νn(A) = 1 if n ∈ θ(A•) and
νn(A) = 0 otherwise.

Then νn−δn→ 0.

Remark

There is a lifting for A→ A/fin iff A is generated by fin and an
algebra A0 such that every nonempty A ∈ A0 is infinite.



Application

Proposition

Suppose that fin⊆ A⊆ P(ω) and the quotient map
A→ A/fin,A→ A•, admits a lifting. Then c0 is complemented in
C (KA).

Proof.

By our assumption there is a homomorphism θ : A/fin→ A, such
that θ(a)• = a for a ∈ A/fin.
Define νn ∈ ba+(A) saying that νn(A) = 1 if n ∈ θ(A•) and
νn(A) = 0 otherwise.
Then νn−δn→ 0.

Remark

There is a lifting for A→ A/fin iff A is generated by fin and an
algebra A0 such that every nonempty A ∈ A0 is infinite.



Application

Proposition

Suppose that fin⊆ A⊆ P(ω) and the quotient map
A→ A/fin,A→ A•, admits a lifting. Then c0 is complemented in
C (KA).

Proof.

By our assumption there is a homomorphism θ : A/fin→ A, such
that θ(a)• = a for a ∈ A/fin.
Define νn ∈ ba+(A) saying that νn(A) = 1 if n ∈ θ(A•) and
νn(A) = 0 otherwise.
Then νn−δn→ 0.

Remark

There is a lifting for A→ A/fin iff A is generated by fin and an
algebra A0 such that every nonempty A ∈ A0 is infinite.



Example: the measure algebra

Let B = Bor [0,1]/(λ = 0); S = ult(B) is nonseparable and
carries a strictly positive measure.

Frankiewicz & Gutek: Under CH, there is an embedding
ϕ : B→ P(ω)/fin such that λ (b) = d(ϕ(a)) where d(·) is the
usual asymptotic density.

Dow & Hart: Under OCA, B does not embed into P(ω)/fin.

Example using ϕ : B→ P(ω)/fin

Let A = {A⊆ ω;A• ∈ ϕ(B)}. Then K ∗A = S

1 C (K ∗A) = C (S)(≡ L∞[0,1]) contains no complemented copy of
c0 (is a Grothendieck space).

2 Drygier & GP: c0 is not complemented in C (KA) though the
remainder K ∗A supports a measure.

3 C (KA) contains a complemented copy of c0, spanned by χI (n),
for some sequence of pairwise disjoint intervals I (n)⊆ ω.
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Our main results

Theorem 1

Assume p = c. There is a compactification γω such that γω \ω is
separable and c0 is not complemented in C (γω).

Theorem 2

Assume CH. There is a compactification γω such that γω \ω is
nonseparable and c0 is complemented in C (γω) (so, in

particular, γω \ω carries a strictly postitive measure).

Question

Does there always exist γω such that γω \ω is nonseparable and
carries a strictly positive measure?

Remark

There is such γω if b = c or cov(E ) = ω1.
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Does there always exist γω such that γω \ω is nonseparable and
carries a strictly positive measure?

Remark

There is such γω if b = c or cov(E ) = ω1.
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