Compactifications of ω and the Banach space c_0

Grzegorz Plebanek

Instytut Matematyczny, Universytet Wrocławski

joint work with Piotr Drygier

Winter School in Abstract Analysis

Hejnice, February 2015

<ロ> <四> <三> <三> <三> <三> <三> <三> <三> <三> <三</p>

Notation

- C(K) is the space of continuous functions $K \to \mathbb{R}$.
- c_0 is the space of sequences $x = (x_n)_{n \in \omega}$ converging to 0.

(日) (個) (目) (日) (日)

• I_{∞} is the space of bounded sequences, $I_{\infty} = C(\beta \omega)$.

Notation

- C(K) is the space of continuous functions $K \to \mathbb{R}$.
- c_0 is the space of sequences $x = (x_n)_{n \in \omega}$ converging to 0.
- I_{∞} is the space of bounded sequences, $I_{\infty} = C(\beta \omega)$.

Complemented subspaces

A closed subspace Y of a Banach space X is complemented if $X = Y \oplus Z$ for some closed subspace $Z \subseteq X$. Equivalently, there is a bounded linear operator $P : X \to X$, which is a projection i.e. $P \circ P = P$, and such that P(X) = Y.

Notation

- C(K) is the space of continuous functions $K \to \mathbb{R}$.
- c_0 is the space of sequences $x = (x_n)_{n \in \omega}$ converging to 0.
- I_{∞} is the space of bounded sequences, $I_{\infty} = C(\beta \omega)$.

Complemented subspaces

A closed subspace Y of a Banach space X is complemented if $X = Y \oplus Z$ for some closed subspace $Z \subseteq X$. Equivalently, there is a bounded linear operator $P : X \to X$, which is a projection i.e. $P \circ P = P$, and such that P(X) = Y.

Classical results

- (a) **Sobczyk:** If X is separable then every isomorphic copy of c_0 in X is complemented.
- (b) **Phillips:** c_0 is not compemented in I_{∞} .

$$\mathscr{X} = \{ X \subseteq C(K) : X \text{ is isomorphic to } c_0 \};$$

$$\mathscr{X}_c = \{ X \in \mathscr{X} : X \text{ is complemented in } C(K) \}.$$

・ロト ・回 ・ モト ・ モー ・ うへで

$$\mathscr{X} = \{ X \subseteq C(K) : X \text{ is isomorphic to } c_0 \};$$

$$\mathscr{X}_c = \{ X \in \mathscr{X} : X \text{ is complemented in } C(K) \}.$$

$$\mathscr{X} = \{ X \subseteq C(K) : X \text{ is isomorphic to } c_0 \};$$

$$\mathscr{X}_c = \{ X \in \mathscr{X} : X \text{ is complemented in } C(K) \}.$$

Various positions (of c_0)

𝔅_c = ∅; 𝔅(𝐾) is Grothendieck; examples: 𝔅(𝑘) with 𝐾 extremely disconnected; indecomposable 𝔅(𝑘) spaces of Koszmider.

 $\mathscr{X} = \{ X \subseteq C(K) : X \text{ is isomorphic to } c_0 \};$ $\mathscr{X}_c = \{ X \in \mathscr{X} : X \text{ is complemented in } C(K) \}.$

- 𝔅_c = ∅; C(K) is Grothendieck; examples: C(K) with K extremely disconnected; indecomposable C(K) spaces of Koszmider.
- $\mathscr{X}_{c} \neq \emptyset$; example: K containing a converging sequence.

 $\mathscr{X} = \{ X \subseteq C(K) : X \text{ is isomorphic to } c_0 \};$ $\mathscr{X}_c = \{ X \in \mathscr{X} : X \text{ is complemented in } C(K) \}.$

- 𝔅_c = ∅; C(K) is Grothendieck; examples: C(K) with K extremely disconnected; indecomposable C(K) spaces of Koszmider.
- $\mathscr{X}_{c} \neq \emptyset$; example: K containing a converging sequence.
- *X_c* coinitial in *X*; example: *K* Rosenthal compact, *K* admitting only small measures (**Drygier & GP**).

 $\mathscr{X} = \{ X \subseteq C(K) : X \text{ is isomorphic to } c_0 \};$ $\mathscr{X}_c = \{ X \in \mathscr{X} : X \text{ is complemented in } C(K) \}.$

- 𝔅_c = ∅; C(K) is Grothendieck; examples: C(K) with K extremely disconnected; indecomposable C(K) spaces of Koszmider.
- $\mathscr{X}_{c} \neq \emptyset$; example: K containing a converging sequence.
- *X_c* coinitial in *X*; example: *K* Rosenthal compact, *K* admitting only small measures (**Drygier & GP**).
- $\mathscr{X}_{c} = \mathscr{X}$; examples: compact lines (Correa & Tausk).

▲□▶ ▲圖▶ ★ 圖▶ ★ 圖▶ → 圖 - のへで

Let $\gamma \omega$ be a compactification of ω so $\gamma \omega$ is compact and contains ω as a dense subset of isolated points

(日) (同) (E) (E) (E)

Let $\gamma\omega$ be a compactification of ω so $\gamma\omega$ is compact and contains ω as a dense subset of isolated points Then $C(\gamma\omega)$ contains (a natural copy of) c_0 , namely

$$c_0 = \{g \in C(\gamma \omega) : g | \gamma \omega \setminus \omega \equiv 0\},\$$

$$c_0 \ni e_n \to \chi_{\{n\}} \in C(\gamma \omega).$$

(日) (同) (E) (E) (E)

Let $\gamma \omega$ be a compactification of ω so $\gamma \omega$ is compact and contains ω as a dense subset of isolated points Then $C(\gamma \omega)$ contains (a natural copy of) c_0 , namely

$$c_0 = \{g \in C(\gamma \omega) : g | \gamma \omega \setminus \omega \equiv 0\},\$$

$$c_0 \ni e_n \to \chi_{\{n\}} \in C(\gamma \omega).$$

Jesus Castillo, Piotr Koszmider, Wiesław Kubiś, Omar Selim

Problem Characterize $\gamma \omega$ such that c_0 is complemented in $C(\gamma \omega)$.

Let $\gamma \omega$ be a compactification of ω so $\gamma \omega$ is compact and contains ω as a dense subset of isolated points Then $C(\gamma \omega)$ contains (a natural copy of) c_0 , namely

$$c_0 = \{g \in C(\gamma \omega) : g | \gamma \omega \setminus \omega \equiv 0\},\$$

$$c_0 \ni e_n \to \chi_{\{n\}} \in C(\gamma \omega).$$

Jesus Castillo, Piotr Koszmider, Wiesław Kubiś, Omar Selim

Problem Characterize $\gamma \omega$ such that c_0 is complemented in $C(\gamma \omega)$.

Recall that

 c_0 is complemented in $C(\gamma \omega)$ whenever $\gamma \omega$ is metrizable. c_0 is not complemented in $C(\beta \omega)$.

Compactifications of ω and subalgebras of $P(\omega)$

Every zerodimensional $\gamma \omega$ may be seen as the Stone space $ult(\mathfrak{A})$ of some algebra $\mathfrak{A} \subseteq P(\omega)$ containing *fin*. We shall write $K_{\mathfrak{A}} = ult(\mathfrak{A})$ for such a compactification and $K_{\mathfrak{A}}^* = K_{\mathfrak{A}} \setminus \omega$ for its remainder. Every zerodimensional $\gamma \omega$ may be seen as the Stone space $ult(\mathfrak{A})$ of some algebra $\mathfrak{A} \subseteq P(\omega)$ containing *fin*. We shall write $K_{\mathfrak{A}} = ult(\mathfrak{A})$ for such a compactification and $K_{\mathfrak{A}}^* = K_{\mathfrak{A}} \setminus \omega$ for its remainder.

Finitely additive measures

Let $ba_+(\mathfrak{A})$ denote the space of all bounded finitely additive measures on \mathfrak{A} .

$$\mathrm{ba}(\mathfrak{A}) = \{\mu_1 - \mu_2 : \mu_1, \mu_2 \in \mathrm{ba}_+(\mathfrak{A})\}$$

is the space of all signed measures. Essentially, $ba(\mathfrak{A})$ is the dual Banach space of all functionals on $C(K_{\mathfrak{A}})$.

Basic lemma

▲□→ ▲圖→ ▲目→ ▲目→ 目 めんの

Lemma

The following are equivalent for $fin \subseteq \mathfrak{A} \subseteq P(\omega)$

- (i) c_0 is complemented in $C(K_{\mathfrak{A}})$;
- (ii) there is a uniformly bounded sequence $(v_n)_n$ in ba (\mathfrak{A}) such that every v_n vanishes on *fin* and $v_n \delta_n \rightarrow 0$.

Lemma

The following are equivalent for $fin \subseteq \mathfrak{A} \subseteq P(\omega)$

(i)
$$c_0$$
 is complemented in $C(K_{\mathfrak{A}})$;

(ii) there is a uniformly bounded sequence $(v_n)_n$ in ba (\mathfrak{A}) such that every v_n vanishes on *fin* and $v_n - \delta_n \rightarrow 0$.

Remarks

•
$$v_n - \delta_n
ightarrow 0$$
 means that for every $A \in \mathfrak{A}$

$$\lim_{n\in A} v_n(A) = 1 \text{ and } \lim_{n\in A} v_n(\omega \setminus A) = 0.$$

Lemma

The following are equivalent for $fin \subseteq \mathfrak{A} \subseteq P(\omega)$

(i)
$$c_0$$
 is complemented in $C(K_{\mathfrak{A}})$;

(ii) there is a uniformly bounded sequence $(v_n)_n$ in ba (\mathfrak{A}) such that every v_n vanishes on *fin* and $v_n - \delta_n \rightarrow 0$.

Remarks

•
$$v_n - \delta_n
ightarrow 0$$
 means that for every $A \in \mathfrak{A}$

$$\lim_{n\in A} v_n(A) = 1 \text{ and } \lim_{n\in A} v_n(\omega \setminus A) = 0.$$

• If c_0 is complemented in $C(K_{\mathfrak{A}})$ then $K_{\mathfrak{A}}^*$ must carry a strictly positive measure.

Application

▲□→ ▲□→ ▲目→ ▲目→ 目 めんの

Suppose that $fin \subseteq \mathfrak{A} \subseteq P(\omega)$ and the quotient map $\mathfrak{A} \to \mathfrak{A}/fin, A \to A^{\bullet}$, admits a lifting. Then c_0 is complemented in $C(K_{\mathfrak{A}})$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Suppose that $fin \subseteq \mathfrak{A} \subseteq P(\omega)$ and the quotient map $\mathfrak{A} \to \mathfrak{A}/fin, A \to A^{\bullet}$, admits a lifting. Then c_0 is complemented in $C(K_{\mathfrak{A}})$.

Proof.

By our assumption there is a homomorphism $\theta : \mathfrak{A}/fin \to \mathfrak{A}$, such that $\theta(a)^{\bullet} = a$ for $a \in \mathfrak{A}/fin$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Suppose that $fin \subseteq \mathfrak{A} \subseteq P(\omega)$ and the quotient map $\mathfrak{A} \to \mathfrak{A}/fin, A \to A^{\bullet}$, admits a lifting. Then c_0 is complemented in $C(K_{\mathfrak{A}})$.

Proof.

By our assumption there is a homomorphism $\theta : \mathfrak{A}/fin \to \mathfrak{A}$, such that $\theta(a)^{\bullet} = a$ for $a \in \mathfrak{A}/fin$. Define $v_n \in ba_+(\mathfrak{A})$ saying that $v_n(A) = 1$ if $n \in \theta(A^{\bullet})$ and $v_n(A) = 0$ otherwise.

Suppose that $fin \subseteq \mathfrak{A} \subseteq P(\omega)$ and the quotient map $\mathfrak{A} \to \mathfrak{A}/fin, A \to A^{\bullet}$, admits a lifting. Then c_0 is complemented in $C(K_{\mathfrak{A}})$.

Proof.

By our assumption there is a homomorphism $\theta : \mathfrak{A}/fin \to \mathfrak{A}$, such that $\theta(a)^{\bullet} = a$ for $a \in \mathfrak{A}/fin$. Define $v_n \in ba_+(\mathfrak{A})$ saying that $v_n(A) = 1$ if $n \in \theta(A^{\bullet})$ and $v_n(A) = 0$ otherwise. Then $v_n - \delta_n \to 0$.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへで

Suppose that $fin \subseteq \mathfrak{A} \subseteq P(\omega)$ and the quotient map $\mathfrak{A} \to \mathfrak{A}/fin, A \to A^{\bullet}$, admits a lifting. Then c_0 is complemented in $C(K_{\mathfrak{A}})$.

Proof.

By our assumption there is a homomorphism $\theta : \mathfrak{A}/fin \to \mathfrak{A}$, such that $\theta(a)^{\bullet} = a$ for $a \in \mathfrak{A}/fin$. Define $v_n \in ba_+(\mathfrak{A})$ saying that $v_n(A) = 1$ if $n \in \theta(A^{\bullet})$ and $v_n(A) = 0$ otherwise. Then $v_n - \delta_n \to 0$.

Remark

There is a lifting for $\mathfrak{A} \to \mathfrak{A}/fin$ iff \mathfrak{A} is generated by *fin* and an algebra \mathfrak{A}_0 such that every nonempty $A \in \mathfrak{A}_0$ is infinite.

(ロ) (日) (日) (王) (王) (王) (100)

Let B = Bor[0,1]/(λ = 0); S = ult(B) is nonseparable and carries a strictly positive measure.

- Let B = Bor[0,1]/(λ = 0); S = ult(B) is nonseparable and carries a strictly positive measure.
- Frankiewicz & Gutek: Under CH, there is an embedding $\varphi : \mathfrak{B} \to P(\omega)/fin$ such that $\lambda(b) = d(\varphi(a))$ where $d(\cdot)$ is the usual asymptotic density.

- Let B = Bor[0,1]/(λ = 0); S = ult(B) is nonseparable and carries a strictly positive measure.
- Frankiewicz & Gutek: Under CH, there is an embedding $\varphi : \mathfrak{B} \to P(\omega)/fin$ such that $\lambda(b) = d(\varphi(a))$ where $d(\cdot)$ is the usual asymptotic density.
- **Dow & Hart:** Under OCA, \mathfrak{B} does not embed into $P(\omega)/fin$.

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

- Let B = Bor[0,1]/(λ = 0); S = ult(B) is nonseparable and carries a strictly positive measure.
- Frankiewicz & Gutek: Under CH, there is an embedding $\varphi : \mathfrak{B} \to P(\omega)/fin$ such that $\lambda(b) = d(\varphi(a))$ where $d(\cdot)$ is the usual asymptotic density.
- **Dow & Hart:** Under OCA, \mathfrak{B} does not embed into $P(\omega)/fin$.

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

- Let B = Bor[0,1]/(λ = 0); S = ult(B) is nonseparable and carries a strictly positive measure.
- Frankiewicz & Gutek: Under CH, there is an embedding
 φ : 𝔅 → P(ω)/fin such that λ(b) = d(φ(a)) where d(·) is the
 usual asymptotic density.
- **Dow & Hart:** Under OCA, \mathfrak{B} does not embed into $P(\omega)/fin$.

Example using $\varphi:\mathfrak{B} \to P(\omega)/\textit{fin}$

Let
$$\mathfrak{A} = \{A \subseteq \omega; A^{\bullet} \in \varphi(\mathfrak{B})\}$$
. Then $K_{\mathfrak{A}}^* = S$

- Let B = Bor[0,1]/(λ = 0); S = ult(B) is nonseparable and carries a strictly positive measure.
- Frankiewicz & Gutek: Under CH, there is an embedding $\varphi : \mathfrak{B} \to P(\omega)/fin$ such that $\lambda(b) = d(\varphi(a))$ where $d(\cdot)$ is the usual asymptotic density.
- **Dow & Hart:** Under OCA, \mathfrak{B} does not embed into $P(\omega)/fin$.

Example using $\varphi:\mathfrak{B} ightarrow P(\omega)/\mathit{fin}$

Let
$$\mathfrak{A} = \{A \subseteq \omega; A^{\bullet} \in \varphi(\mathfrak{B})\}$$
. Then $K_{\mathfrak{A}}^* = S$

C(K^{*}_𝔅) = C(S)(≡ L_∞[0,1]) contains no complemented copy of c₀ (is a Grothendieck space).

- Let B = Bor[0,1]/(λ = 0); S = ult(B) is nonseparable and carries a strictly positive measure.
- Frankiewicz & Gutek: Under CH, there is an embedding $\varphi : \mathfrak{B} \to P(\omega)/fin$ such that $\lambda(b) = d(\varphi(a))$ where $d(\cdot)$ is the usual asymptotic density.
- **Dow & Hart:** Under OCA, \mathfrak{B} does not embed into $P(\omega)/fin$.

Example using $\varphi:\mathfrak{B} ightarrow P(\omega)/\mathit{fin}$

Let
$$\mathfrak{A} = \{A \subseteq \omega; A^{\bullet} \in \varphi(\mathfrak{B})\}$$
. Then $K^*_{\mathfrak{A}} = S$

- C(K^{*}_𝔅) = C(S)(≡ L_∞[0,1]) contains no complemented copy of c₀ (is a Grothendieck space).
- **2 Drygier & GP:** c_0 is not complemented in $C(K_{\mathfrak{A}})$ though the remainder $K_{\mathfrak{A}}^*$ supports a measure.

- Let B = Bor[0,1]/(λ = 0); S = ult(B) is nonseparable and carries a strictly positive measure.
- Frankiewicz & Gutek: Under CH, there is an embedding $\varphi : \mathfrak{B} \to P(\omega)/fin$ such that $\lambda(b) = d(\varphi(a))$ where $d(\cdot)$ is the usual asymptotic density.
- **Dow & Hart:** Under OCA, \mathfrak{B} does not embed into $P(\omega)/fin$.

Example using $\varphi:\mathfrak{B} ightarrow P(\omega)/\mathit{fin}$

Let
$$\mathfrak{A} = \{A \subseteq \omega; A^{\bullet} \in \varphi(\mathfrak{B})\}$$
. Then $K_{\mathfrak{A}}^* = S$

- C(K^{*}_𝔅) = C(S)(≡ L_∞[0,1]) contains no complemented copy of c₀ (is a Grothendieck space).
- Orygier & GP: c₀ is not complemented in C(K_A) though the remainder K^{*}_A supports a measure.
- $C(K_{\mathfrak{A}})$ contains a complemented copy of c_0 , spanned by $\chi_{I(n)}$, for some sequence of pairwise disjoint intervals $I(n) \subseteq \omega$.

▲□→ ▲圖→ ▲目→ ▲目→ 目 めんぐ

Theorem 1

Assume $\mathfrak{p} = \mathfrak{c}$. There is a compactification $\gamma \omega$ such that $\gamma \omega \setminus \omega$ is separable and c_0 is not complemented in $C(\gamma \omega)$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Theorem 1

Assume $\mathfrak{p} = \mathfrak{c}$. There is a compactification $\gamma \omega$ such that $\gamma \omega \setminus \omega$ is separable and c_0 is not complemented in $C(\gamma \omega)$.

Theorem 2

Assume CH. There is a compactification $\gamma \omega$ such that $\gamma \omega \setminus \omega$ is nonseparable and c_0 is complemented in $C(\gamma \omega)$ (so, in particular, $\gamma \omega \setminus \omega$ carries a strictly postitive measure).

Theorem 1

Assume $\mathfrak{p} = \mathfrak{c}$. There is a compactification $\gamma \omega$ such that $\gamma \omega \setminus \omega$ is separable and c_0 is not complemented in $C(\gamma \omega)$.

Theorem 2

Assume CH. There is a compactification $\gamma \omega$ such that $\gamma \omega \setminus \omega$ is nonseparable and c_0 is complemented in $C(\gamma \omega)$ (so, in particular, $\gamma \omega \setminus \omega$ carries a strictly postitive measure).

Question

Does there always exist $\gamma \omega$ such that $\gamma \omega \setminus \omega$ is nonseparable and carries a strictly positive measure?

Theorem 1

Assume $\mathfrak{p} = \mathfrak{c}$. There is a compactification $\gamma \omega$ such that $\gamma \omega \setminus \omega$ is separable and c_0 is not complemented in $C(\gamma \omega)$.

Theorem 2

Assume CH. There is a compactification $\gamma \omega$ such that $\gamma \omega \setminus \omega$ is nonseparable and c_0 is complemented in $C(\gamma \omega)$ (so, in particular, $\gamma \omega \setminus \omega$ carries a strictly postitive measure).

Question

Does there always exist $\gamma \omega$ such that $\gamma \omega \setminus \omega$ is nonseparable and carries a strictly positive measure?

Remark

There is such $\gamma \omega$ if $\mathfrak{b} = \mathfrak{c}$ or $\operatorname{cov}(\mathscr{E}) = \omega_1$.