Compactifications of ω and the Banach space c_{0}

Grzegorz Plebanek

Instytut Matematyczny, Universytet Wrocławski
joint work with Piotr Drygier

Winter School in Abstract Analysis
Hejnice, February 2015

Banach spaces

Banach spaces

Notation

- $C(K)$ is the space of continuous functions $K \rightarrow \mathbb{R}$.
- c_{0} is the space of sequences $x=\left(x_{n}\right)_{n \in \omega}$ converging to 0 .
- I_{∞} is the space of bounded sequences, $I_{\infty}=C(\beta \omega)$.

Banach spaces

Notation

- $C(K)$ is the space of continuous functions $K \rightarrow \mathbb{R}$.
- c_{0} is the space of sequences $x=\left(x_{n}\right)_{n \in \omega}$ converging to 0 .
- I_{∞} is the space of bounded sequences, $I_{\infty}=C(\beta \omega)$.

Complemented subspaces

A closed subspace Y of a Banach space X is complemented if $X=Y \oplus Z$ for some closed subspace $Z \subseteq X$.
Equivalently, there is a bounded linear operator $P: X \rightarrow X$, which is a projection i.e. $P \circ P=P$, and such that $P(X)=Y$.

Banach spaces

Notation

- $C(K)$ is the space of continuous functions $K \rightarrow \mathbb{R}$.
- c_{0} is the space of sequences $x=\left(x_{n}\right)_{n \in \omega}$ converging to 0 .
- I_{∞} is the space of bounded sequences, $I_{\infty}=C(\beta \omega)$.

Complemented subspaces

A closed subspace Y of a Banach space X is complemented if $X=Y \oplus Z$ for some closed subspace $Z \subseteq X$.
Equivalently, there is a bounded linear operator $P: X \rightarrow X$, which is a projection i.e. $P \circ P=P$, and such that $P(X)=Y$.

Classical results

(a) Sobczyk: If X is separable then every isomorphic copy of c_{0} in X is complemented.
(b) Phillips: c_{0} is not compemented in I_{∞}.

c_{0} in $C(K), K$ infinite compact

$\mathscr{X}=\left\{X \subseteq C(K): X\right.$ is isomorphic to $\left.c_{0}\right\} ;$
$\mathscr{X}_{c}=\{X \in \mathscr{X}: X$ is complemented in $C(K)\}$.

c_{0} in $C(K), K$ infinite compact

$\mathscr{X}=\left\{X \subseteq C(K): X\right.$ is isomorphic to $\left.c_{0}\right\} ;$
$\mathscr{X}_{c}=\{X \in \mathscr{X}: X$ is complemented in $C(K)\}$.
Various positions (of c_{0})

c_{0} in $C(K), K$ infinite compact

$\mathscr{X}=\left\{X \subseteq C(K): X\right.$ is isomorphic to $\left.c_{0}\right\} ;$
$\mathscr{X}_{c}=\{X \in \mathscr{X}: X$ is complemented in $C(K)\}$.
Various positions (of c_{0})

- $\mathscr{X}_{c}=\emptyset ; C(K)$ is Grothendieck; examples: $C(K)$ with K extremely disconnected; indecomposable $C(K)$ spaces of Koszmider.

c_{0} in $C(K), K$ infinite compact

$\mathscr{X}=\left\{X \subseteq C(K): X\right.$ is isomorphic to $\left.c_{0}\right\} ;$
$\mathscr{X}_{c}=\{X \in \mathscr{X}: X$ is complemented in $C(K)\}$.

Various positions (of c_{0})

- $\mathscr{X}_{c}=\emptyset ; C(K)$ is Grothendieck; examples: $C(K)$ with K extremely disconnected; indecomposable $C(K)$ spaces of Koszmider.
- $\mathscr{X}_{c} \neq \emptyset$; example: K containing a converging sequence.

c_{0} in $C(K), K$ infinite compact

$\mathscr{X}=\left\{X \subseteq C(K): X\right.$ is isomorphic to $\left.c_{0}\right\} ;$
$\mathscr{X}_{c}=\{X \in \mathscr{X}: X$ is complemented in $C(K)\}$.

Various positions (of c_{0})

- $\mathscr{X}_{c}=\emptyset ; C(K)$ is Grothendieck; examples: $C(K)$ with K extremely disconnected; indecomposable $C(K)$ spaces of Koszmider.
- $\mathscr{X}_{c} \neq \emptyset$; example: K containing a converging sequence.
- \mathscr{X}_{c} coinitial in \mathscr{X}; example: K Rosenthal compact, K admitting only small measures (Drygier \& GP).

c_{0} in $C(K), K$ infinite compact

$\mathscr{X}=\left\{X \subseteq C(K): X\right.$ is isomorphic to $\left.c_{0}\right\} ;$
$\mathscr{X}_{c}=\{X \in \mathscr{X}: X$ is complemented in $C(K)\}$.

Various positions (of c_{0})

- $\mathscr{X}_{c}=\emptyset ; C(K)$ is Grothendieck; examples: $C(K)$ with K extremely disconnected; indecomposable $C(K)$ spaces of Koszmider.
- $\mathscr{X}_{c} \neq \emptyset$; example: K containing a converging sequence.
- \mathscr{X}_{c} coinitial in \mathscr{X}; example: K Rosenthal compact, K admitting only small measures (Drygier \& GP).
- $\mathscr{X}_{c}=\mathscr{X}$; examples: compact lines (Correa \& Tausk).

c_{0} and compactifications of ω

Let $\gamma \omega$ be a compactification of ω so $\gamma \omega$ is compact and contains ω as a dense subset of isolated points

Let $\gamma \omega$ be a compactification of ω so $\gamma \omega$ is compact and contains ω as a dense subset of isolated points
Then $C(\gamma \omega)$ contains (a natural copy of) c_{0}, namely

$$
\begin{aligned}
c_{0}= & \{g \in C(\gamma \omega): g \mid \gamma \omega \backslash \omega \equiv 0\}, \\
& c_{0} \ni e_{n} \rightarrow \chi_{\{n\}} \in C(\gamma \omega) .
\end{aligned}
$$

Let $\gamma \omega$ be a compactification of ω so $\gamma \omega$ is compact and contains ω as a dense subset of isolated points
Then $C(\gamma \omega)$ contains (a natural copy of) c_{0}, namely

$$
\begin{aligned}
c_{0}= & \{g \in C(\gamma \omega): g \mid \gamma \omega \backslash \omega \equiv 0\}, \\
& c_{0} \ni e_{n} \rightarrow \chi_{\{n\}} \in C(\gamma \omega) .
\end{aligned}
$$

Jesus Castillo, Piotr Koszmider, Wiesław Kubiś, Omar Selim
Problem Characterize $\gamma \omega$ such that c_{0} is complemented in $C(\gamma \omega)$.

Let $\gamma \omega$ be a compactification of ω so $\gamma \omega$ is compact and contains ω as a dense subset of isolated points
Then $C(\gamma \omega)$ contains (a natural copy of) c_{0}, namely

$$
\begin{aligned}
c_{0}= & \{g \in C(\gamma \omega): g \mid \gamma \omega \backslash \omega \equiv 0\}, \\
& c_{0} \ni e_{n} \rightarrow \chi_{\{n\}} \in C(\gamma \omega) .
\end{aligned}
$$

Jesus Castillo, Piotr Koszmider, Wiesław Kubiś, Omar Selim

Problem Characterize $\gamma \omega$ such that c_{0} is complemented in $C(\gamma \omega)$.

Recall that

c_{0} is complemented in $C(\gamma \omega)$ whenever $\gamma \omega$ is metrizable.
c_{0} is not complemented in $C(\beta \omega)$.

Compactifications of ω and subalgebras of $P(\omega)$

Compactifications of ω and subalgebras of $P(\omega)$

Every zerodimensional $\gamma \omega$ may be seen as the Stone space ult(\mathfrak{A}) of some algebra $\mathfrak{A} \subseteq P(\omega)$ containing fin.
We shall write $K_{\mathfrak{A}}=\operatorname{ult}(\mathfrak{A})$ for such a compactification and $K_{\mathfrak{A}}^{*}=K_{\mathfrak{A}} \backslash \omega$ for its remainder.

Compactifications of ω and subalgebras of $P(\omega)$

Every zerodimensional $\gamma \omega$ may be seen as the Stone space ult(\mathfrak{A}) of some algebra $\mathfrak{A} \subseteq P(\omega)$ containing fin.
We shall write $K_{\mathfrak{A}}=\operatorname{ult}(\mathfrak{A})$ for such a compactification and $K_{\mathfrak{A}}^{*}=K_{\mathfrak{A}} \backslash \omega$ for its remainder.

Finitely additive measures

Let $\mathrm{ba}_{+}(\mathfrak{A})$ denote the space of all bounded finitely additive measures on \mathfrak{A}.

$$
\operatorname{ba}(\mathfrak{A})=\left\{\mu_{1}-\mu_{2}: \mu_{1}, \mu_{2} \in \mathrm{ba}_{+}(\mathfrak{A})\right\}
$$

is the space of all signed measures. Essentially, $\mathrm{ba}(\mathfrak{A})$ is the dual Banach space of all functionals on $C\left(K_{\mathfrak{A}}\right)$.

Basic lemma

Basic lemma

Lemma

The following are equivalent for fin $\subseteq \mathfrak{A} \subseteq P(\omega)$
(i) c_{0} is complemented in $C\left(K_{\mathfrak{A}}\right)$;
(ii) there is a uniformly bounded sequence $\left(v_{n}\right)_{n}$ in ba (\mathfrak{A}) such that every v_{n} vanishes on fin and $v_{n}-\delta_{n} \rightarrow 0$.

Basic lemma

Lemma

The following are equivalent for fin $\subseteq \mathfrak{A} \subseteq P(\omega)$
(i) c_{0} is complemented in $C\left(K_{\mathfrak{A}}\right)$;
(ii) there is a uniformly bounded sequence $\left(v_{n}\right)_{n}$ in $\mathrm{ba}(\mathfrak{A})$ such that every v_{n} vanishes on fin and $v_{n}-\delta_{n} \rightarrow 0$.

Remarks

- $v_{n}-\delta_{n} \rightarrow 0$ means that for every $A \in \mathfrak{A}$

$$
\lim _{n \in A} v_{n}(A)=1 \text { and } \lim _{n \in A} v_{n}(\omega \backslash A)=0
$$

Basic lemma

Lemma

The following are equivalent for fin $\subseteq \mathfrak{A} \subseteq P(\omega)$
(i) c_{0} is complemented in $C\left(K_{\mathfrak{A}}\right)$;
(ii) there is a uniformly bounded sequence $\left(v_{n}\right)_{n}$ in $\mathrm{ba}(\mathfrak{A})$ such that every v_{n} vanishes on fin and $v_{n}-\delta_{n} \rightarrow 0$.

Remarks

- $v_{n}-\delta_{n} \rightarrow 0$ means that for every $A \in \mathfrak{A}$

$$
\lim _{n \in A} v_{n}(A)=1 \text { and } \lim _{n \in A} v_{n}(\omega \backslash A)=0
$$

- If c_{0} is complemented in $C\left(K_{\mathfrak{A}}\right)$ then $K_{\mathfrak{A}}^{*}$ must carry a strictly positive measure.

Application

Application

Proposition

Suppose that fin $\subseteq \mathfrak{A} \subseteq P(\omega)$ and the quotient map $\mathfrak{A} \rightarrow \mathfrak{A} /$ fin,$A \rightarrow A^{\bullet}$, admits a lifting. Then c_{0} is complemented in $C\left(K_{\mathfrak{A}}\right)$.

Application

Proposition

Suppose that fin $\subseteq \mathfrak{A} \subseteq P(\omega)$ and the quotient map $\mathfrak{A} \rightarrow \mathfrak{A} /$ fin,$A \rightarrow A^{\bullet}$, admits a lifting. Then c_{0} is complemented in $C\left(K_{\mathfrak{A}}\right)$.

Proof.

By our assumption there is a homomorphism $\theta: \mathfrak{A} /$ fin $\rightarrow \mathfrak{A}$, such that $\theta(a)^{\bullet}=a$ for $a \in \mathfrak{A} /$ fin.

Application

Proposition

Suppose that fin $\subseteq \mathfrak{A} \subseteq P(\omega)$ and the quotient map $\mathfrak{A} \rightarrow \mathfrak{A} /$ fin,$A \rightarrow A^{\bullet}$, admits a lifting. Then c_{0} is complemented in $C\left(K_{\mathfrak{R}}\right)$.

Proof.

By our assumption there is a homomorphism $\theta: \mathfrak{A} /$ fin $\rightarrow \mathfrak{A}$, such that $\theta(a)^{\bullet}=a$ for $a \in \mathfrak{A} /$ fin.
Define $v_{n} \in$ ba (\mathfrak{A}) saying that $v_{n}(A)=1$ if $n \in \theta\left(A^{\bullet}\right)$ and $v_{n}(A)=0$ otherwise.

Application

Proposition

Suppose that fin $\subseteq \mathfrak{A} \subseteq P(\omega)$ and the quotient map $\mathfrak{A} \rightarrow \mathfrak{A} /$ fin,$A \rightarrow A^{\bullet}$, admits a lifting. Then c_{0} is complemented in $C\left(K_{\mathfrak{R}}\right)$.

Proof.

By our assumption there is a homomorphism $\theta: \mathfrak{A} / f$ in $\rightarrow \mathfrak{A}$, such that $\theta(a)^{\bullet}=a$ for $a \in \mathfrak{A} /$ fin.
Define $v_{n} \in$ ba (\mathfrak{A}) saying that $v_{n}(A)=1$ if $n \in \theta\left(A^{\bullet}\right)$ and $v_{n}(A)=0$ otherwise.
Then $v_{n}-\delta_{n} \rightarrow 0$.

Application

Proposition

Suppose that fin $\subseteq \mathfrak{A} \subseteq P(\omega)$ and the quotient map $\mathfrak{A} \rightarrow \mathfrak{A} /$ fin,$A \rightarrow A^{\bullet}$, admits a lifting. Then c_{0} is complemented in $C\left(K_{\mathfrak{A}}\right)$.

Proof.

By our assumption there is a homomorphism $\theta: \mathfrak{A} /$ fin $\rightarrow \mathfrak{A}$, such that $\theta(a)^{\bullet}=a$ for $a \in \mathfrak{A} /$ fin.
Define $v_{n} \in$ ba $a_{+}(\mathfrak{A})$ saying that $v_{n}(A)=1$ if $n \in \theta\left(A^{\bullet}\right)$ and $v_{n}(A)=0$ otherwise.
Then $v_{n}-\delta_{n} \rightarrow 0$.

Remark

There is a lifting for $\mathfrak{A} \rightarrow \mathfrak{A} /$ fin iff \mathfrak{A} is generated by fin and an algebra \mathfrak{A}_{0} such that every nonempty $A \in \mathfrak{A}_{0}$ is infinite.

Example: the measure algebra

Example: the measure algebra

- Let $\mathfrak{B}=\operatorname{Bor}[0,1] /(\lambda=0) ; S=\operatorname{ult}(\mathfrak{B})$ is nonseparable and carries a strictly positive measure.

Example: the measure algebra

- Let $\mathfrak{B}=\operatorname{Bor}[0,1] /(\lambda=0) ; S=\operatorname{ult}(\mathfrak{B})$ is nonseparable and carries a strictly positive measure.
- Frankiewicz \& Gutek: Under CH , there is an embedding $\varphi: \mathfrak{B} \rightarrow P(\omega) /$ fin such that $\lambda(b)=d(\varphi(a))$ where $d(\cdot)$ is the usual asymptotic density.

Example: the measure algebra

- Let $\mathfrak{B}=\operatorname{Bor}[0,1] /(\lambda=0) ; S=\operatorname{ult}(\mathfrak{B})$ is nonseparable and carries a strictly positive measure.
- Frankiewicz \& Gutek: Under CH , there is an embedding $\varphi: \mathfrak{B} \rightarrow P(\omega) /$ fin such that $\lambda(b)=d(\varphi(a))$ where $d(\cdot)$ is the usual asymptotic density.
- Dow \& Hart: Under OCA, \mathfrak{B} does not embed into $P(\omega) / f i n$.

Example: the measure algebra

- Let $\mathfrak{B}=\operatorname{Bor}[0,1] /(\lambda=0) ; S=\operatorname{ult}(\mathfrak{B})$ is nonseparable and carries a strictly positive measure.
- Frankiewicz \& Gutek: Under CH , there is an embedding $\varphi: \mathfrak{B} \rightarrow P(\omega) /$ fin such that $\lambda(b)=d(\varphi(a))$ where $d(\cdot)$ is the usual asymptotic density.
- Dow \& Hart: Under OCA, \mathfrak{B} does not embed into $P(\omega) / f i n$.

Example: the measure algebra

- Let $\mathfrak{B}=\operatorname{Bor}[0,1] /(\lambda=0) ; S=\operatorname{ult}(\mathfrak{B})$ is nonseparable and carries a strictly positive measure.
- Frankiewicz \& Gutek: Under CH , there is an embedding $\varphi: \mathfrak{B} \rightarrow P(\omega) /$ fin such that $\lambda(b)=d(\varphi(a))$ where $d(\cdot)$ is the usual asymptotic density.
- Dow \& Hart: Under OCA, \mathfrak{B} does not embed into $P(\omega) /$ fin.

Example using $\varphi: \mathfrak{B} \rightarrow P(\omega) /$ fin
Let $\mathfrak{A}=\left\{A \subseteq \omega ; A^{\bullet} \in \varphi(\mathfrak{B})\right\}$. Then $K_{\mathfrak{A}}^{*}=S$

Example: the measure algebra

- Let $\mathfrak{B}=\operatorname{Bor}[0,1] /(\lambda=0) ; S=\operatorname{ult}(\mathfrak{B})$ is nonseparable and carries a strictly positive measure.
- Frankiewicz \& Gutek: Under CH , there is an embedding $\varphi: \mathfrak{B} \rightarrow P(\omega) /$ fin such that $\lambda(b)=d(\varphi(a))$ where $d(\cdot)$ is the usual asymptotic density.
- Dow \& Hart: Under OCA, \mathfrak{B} does not embed into $P(\omega) /$ fin.

Example using $\varphi: \mathfrak{B} \rightarrow P(\omega) /$ fin

Let $\mathfrak{A}=\left\{A \subseteq \omega ; A^{\bullet} \in \varphi(\mathfrak{B})\right\}$. Then $K_{\mathfrak{A}}^{*}=S$
(1) $C\left(K_{\mathfrak{2}}^{*}\right)=C(S)\left(\equiv L_{\infty}[0,1]\right)$ contains no complemented copy of c_{0} (is a Grothendieck space).

Example: the measure algebra

- Let $\mathfrak{B}=\operatorname{Bor}[0,1] /(\lambda=0) ; S=\operatorname{ult}(\mathfrak{B})$ is nonseparable and carries a strictly positive measure.
- Frankiewicz \& Gutek: Under CH , there is an embedding $\varphi: \mathfrak{B} \rightarrow P(\omega) /$ fin such that $\lambda(b)=d(\varphi(a))$ where $d(\cdot)$ is the usual asymptotic density.
- Dow \& Hart: Under OCA, \mathfrak{B} does not embed into $P(\omega) / f i n$.

Example using $\varphi: \mathfrak{B} \rightarrow P(\omega) /$ fin

Let $\mathfrak{A}=\left\{A \subseteq \omega ; A^{\bullet} \in \varphi(\mathfrak{B})\right\}$. Then $K_{\mathfrak{A}}^{*}=S$
(1) $C\left(K_{\mathfrak{A}}^{*}\right)=C(S)\left(\equiv L_{\infty}[0,1]\right)$ contains no complemented copy of c_{0} (is a Grothendieck space).
(2) Drygier \& GP: c_{0} is not complemented in $C\left(K_{\mathfrak{A}}\right)$ though the remainder $K_{\mathfrak{A}}^{*}$ supports a measure.

Example: the measure algebra

- Let $\mathfrak{B}=\operatorname{Bor}[0,1] /(\lambda=0) ; S=\operatorname{ult}(\mathfrak{B})$ is nonseparable and carries a strictly positive measure.
- Frankiewicz \& Gutek: Under CH , there is an embedding $\varphi: \mathfrak{B} \rightarrow P(\omega) /$ fin such that $\lambda(b)=d(\varphi(a))$ where $d(\cdot)$ is the usual asymptotic density.
- Dow \& Hart: Under OCA, \mathfrak{B} does not embed into $P(\omega) / f i n$.

Example using $\varphi: \mathfrak{B} \rightarrow P(\omega) /$ fin

Let $\mathfrak{A}=\left\{A \subseteq \omega ; A^{\bullet} \in \varphi(\mathfrak{B})\right\}$. Then $K_{\mathfrak{A}}^{*}=S$
(1) $C\left(K_{\mathfrak{A}}^{*}\right)=C(S)\left(\equiv L_{\infty}[0,1]\right)$ contains no complemented copy of c_{0} (is a Grothendieck space).
(2) Drygier \& GP: c_{0} is not complemented in $C\left(K_{\mathfrak{A}}\right)$ though the remainder $K_{\mathfrak{A}}^{*}$ supports a measure.
(3) $C\left(K_{\mathfrak{A}}\right)$ contains a complemented copy of c_{0}, spanned by $\chi_{I(n)}$, for some sequence of pairwise disjoint intervals $I(n) \subseteq \omega$.

Our main results

Our main results

Theorem 1

Assume $\mathfrak{p}=\mathfrak{c}$. There is a compactification $\gamma \omega$ such that $\gamma \omega \backslash \omega$ is separable and c_{0} is not complemented in $C(\gamma \omega)$.

Our main results

Theorem 1

Assume $\mathfrak{p}=\mathfrak{c}$. There is a compactification $\gamma \omega$ such that $\gamma \omega \backslash \omega$ is separable and c_{0} is not complemented in $C(\gamma \omega)$.

Theorem 2

Assume CH . There is a compactification $\gamma \omega$ such that $\gamma \omega \backslash \omega$ is nonseparable and c_{0} is complemented in $C(\gamma \omega)$ (so, in particular, $\gamma \omega \backslash \omega$ carries a strictly postitive measure).

Our main results

Theorem 1

Assume $\mathfrak{p}=\mathfrak{c}$. There is a compactification $\gamma \omega$ such that $\gamma \omega \backslash \omega$ is separable and c_{0} is not complemented in $C(\gamma \omega)$.

Theorem 2

Assume CH . There is a compactification $\gamma \omega$ such that $\gamma \omega \backslash \omega$ is nonseparable and c_{0} is complemented in $C(\gamma \omega)$ (so, in particular, $\gamma \omega \backslash \omega$ carries a strictly postitive measure).

Question

Does there always exist $\gamma \omega$ such that $\gamma \omega \backslash \omega$ is nonseparable and carries a strictly positive measure?

Our main results

Theorem 1

Assume $\mathfrak{p}=\mathfrak{c}$. There is a compactification $\gamma \omega$ such that $\gamma \omega \backslash \omega$ is separable and c_{0} is not complemented in $C(\gamma \omega)$.

Theorem 2

Assume CH . There is a compactification $\gamma \omega$ such that $\gamma \omega \backslash \omega$ is nonseparable and c_{0} is complemented in $C(\gamma \omega)$ (so, in particular, $\gamma \omega \backslash \omega$ carries a strictly postitive measure).

Question

Does there always exist $\gamma \omega$ such that $\gamma \omega \backslash \omega$ is nonseparable and carries a strictly positive measure?

Remark

There is such $\gamma \omega$ if $\mathfrak{b}=\mathfrak{c}$ or $\operatorname{cov}(\mathscr{E})=\omega_{1}$.

